본문 바로가기 주메뉴 바로가기

임상연구

㈜피앤에스미캐닉스 홈페이지를 방문해 주셔서 감사합니다.

임상 인증

워크봇은 로봇보조정형용 운동 장치로서 다양한 임상 연구사례가 있습니다.

(Walkbot) Minimal Contact Robotic Stroke Rehabilitation on Risk of COVID-19,Work Efficiency and Sens

관리자 2024-02-21 조회수 81



Abstract

 

Background


Patients with hemiparetic stroke undergo direct, labor-intensive hands-on conventional physical therapy to improve sensorimotor function, spasticity, balance, trunk stability, and activities of daily living (ADLs). Currently, direct, intensive hands-on therapeutic modalities have increased concerns during the coronavirus (COVID-19) global pandemic. We developed an innovative Walkbot to mitigate the issues surrounding conventional hands-on physical therapy.

 

Objectives


We aimed to compare the effects of minimal-contact robotic rehabilitation (MRR) and full-contact conventional rehabilitation (FCR) on static and dynamic balance, trunk stability, ADLs, spasticity, and cognition changes in patients with hemiparetic stroke.

 

Methods


A total of 64 patients with hemiparetic stroke (mean age = 66.38 13.17; 27 women) underwent either MRR or FCR three times/week for 6 weeks. Clinical outcome measurements included the Trunk Impairment Scale (TIS), the Berg Balance Scale (BBS), the modified Ashworth Scale (MAS), the FuglMeyer Assessment (FMA), and the modified Barthel Index (MBI) scores. A 2 2 repeated analysis of variance (ANOVA) was performed, and an independent t-test was used to determine statistical differences in the physiotherapists’ work efficiency and COVID-19 transmission risk.

 

Results


The ANOVA showed that MRR had effects superior to those of FCR on the TIS, the BBS, the FMA, and the MBI (p < 0.05), but not on the MAS (p = 0.230). MRR showed a greater decrease on the physiotherapist’s work efficiency and COVID-19 transmission risk(p < 0.05). Our results provide clinical evidence that robot-assisted locomotor training helps maximize the recovery of sensorimotor function, abnormal synergy, balance, ADLs, and trunk stability, and facilitates a safer environment and less labor demand than conventional stroke rehabilitation.
 
Source :https://www.mdpi.com/2227-9032/10/4/691/review_report